

Biochemical Pharmacology

Biochemical Pharmacology 64 (2002) 723-732

Structural and functional characterization of an acidic platelet aggregation inhibitor and hypotensive phospholipase A₂ from *Bothrops jararacussu* snake venom

Sílvia H. Andrião-Escarso^a, Andreimar M. Soares^{a,b}, Marcos R.M. Fontes^c, André L. Fuly^d, Fernando M.A. Corrêa^e, José C. Rosa^f, Lewis J. Greene^{f,g}, José R. Giglio^{a,*}

^aDepartamento de Bioquímica e Imunologia, FMRP, Universidade de São Paulo, 14049-900 Ribeirão Preto-SP, Brazil

^bDepartamento de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto-SP, Brazil

^cDepartamento de Física e Biofísica, IB, Universidade Estadual Paulista, Botucatu-SP, Brazil

^dDepartamento de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil

^cDepartamento de Farmacologia, FMRP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil

^fCentro de Química de Proteínas, Universidade de São Paulo, Ribeirão Preto-SP, Brazil

^gDepartamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto-SP, Brazil

Received 14 August 2001; accepted 14 January 2002

Abstract

An acidic (pI \sim 4.5) phospholipase A_2 (BthA-I-PLA₂) was isolated from *Bothrops jararacussu* snake venom by ion-exchange chromatography on a CM-Sepharose column followed by reverse phase chromatography on an RP-HPLC C-18 column. It is an \sim 13.7 kDa single chain Asp49 PLA₂ with approximately 122 amino acid residues, 7 disulfide bridges, and the following N-terminal sequence: ¹SLWQFGKMINYVM-GESGVLQYLSYGCYCGLGGQGQPTDATDRCCFVHDCC⁵¹. Crystals of this acidic protein diffracted beyond 2.0 Å resolution. These crystals are monoclinic and have unit cell dimensions of a = 33.9, b = 63.8, c = 49.1 Å, and β = 104.0°. Although not myotoxic, cytotoxic, or lethal, the protein was catalytically 3–4 times more active than BthTX-II, a basic D49 myotoxic PLA₂ from the same venom and other *Bothrops* venoms. Although it showed no toxic activity, it was able to induce time-independent edema, this activity being inhibited by EDTA. In addition, BthA-I-PLA₂ caused a hypotensive response in the rat and inhibited platelet aggregation. Catalytic, antiplatelet and other activities were abolished by chemical modification with 4-bromophenacyl bromide, which is known to covalently bind to His48 of the catalytic site. Antibodies raised against crude *B. jararacussu* venom recognized this acidic PLA₂, while anti-Asp49-BthTX-II recognized it weakly and anti-Lys49-BthTX-I showed the least cross-reaction. These data confirm that myotoxicity does not necessarily correlate with catalytic activity in native PLA₂ homologues and that either of these two activities may exist alone. BthA-I-PLA₂, in addition to representing a relevant molecular model of catalytic activity, is also a promising hypotensive agent and platelet aggregation inhibitor for further studies.

© 2002 Elisevier Science Inc. 7th rights reserved.

Keywords: Bothrops jararacussu; Acidic phospholipase A2; N-terminal sequence; X-ray crystallography; Platelet aggregation inhibition; Hypotensive effect

1. Introduction

PLA₂s (EC 3.1.1.4) are small stable calcium-dependent proteins that hydrolyze the *sn*-2 acyl groups of phospho-

lipids to liberate fatty acids and lysophospholipids. Extracellular PLA₂s occur abundantly in mammalian pancreatic juice as well as in snake and insect venoms, constituting a large family of homologous proteins, which are the major components of snake venoms [1].

PLA₂s from snake venoms have been classified as groups I and II on the basis of their primary structure and disulfide bridge pattern [1,2]. In addition to their primary catalytic role, snake venom PLA₂s show other important toxic/pharmacologic effects including myonecrosis, neurotoxicity,

^{*} Corresponding author. Fax: +55-16-6336840.

E-mail address: jrgiglio@fmrp.usp.br (J.R. Giglio).

Abbreviations: PLA₂, phospholipase A₂; BthA-I-PLA₂, acidic phospholipase A₂ from Bothrops jararacussu venom; PRP, platelet-rich plasma; WRP, washed rabbit platelets; BPB, 4-bromophenacyl bromide; i.c.v., intracerebroventricular.

cardiotoxicity, and hemolytic, hemorrhagic, hypotensive, anticoagulant, platelet aggregation inhibition and edemainducing activities [3–5].

Several PLA₂ enzymes that strongly affect platelet aggregation have been purified and characterized from snake venoms [5–9]. PLA₂ enzymes that affect platelet aggregation have been classified into three major classes: class A contains PLA₂ enzymes that induce platelet aggregation, class B contains PLA₂ enzymes that inhibit platelet aggregation, and class C contains PLA₂ enzymes that act both as inducers and inhibitors [9].

A great number of basic PLA₂s have been purified from the venoms of snakes of the genus *Bothrops* and have been characterized structurally and functionally [10–20]. However, little is known about their acidic PLA₂s [21–25]. Two basic myotoxic PLA₂ homologues, named bothropstoxin-I (Lys49 BthTX-I) and II (Asp49 BthTX-II), have been isolated from *Bothrops jararacussu* venom and characterized [14,26–29]. We now report the isolation, biochemical/pharmacological characterization, partial amino acid sequence, crystallization, and X-ray diffraction data of an acidic platelet aggregation inhibitor and hypotensive PLA₂ from this same venom.

2. Materials and methods

2.1. Materials

B. jararacussu venom was collected from several snakes kept in the Serpentarium of the Faculdade de Medicina, Universidade de São Paulo, and then was vacuum-dried. ADP, BSA, bovine thrombin, EDTA, BPB, a CK-UV kinetic kit, molecular weight protein standards, and acrylamide were obtained from the Sigma Chemical Co. Collagen (Type I) from bovine tendons was purchased from the Chrono-Log Corp. All other reagents were of analytical or sequencing grade.

2.2. Purification procedure

The acidic PLA₂ was purified by ion-exchange chromatography on a CM-Sepharose column at pH 8.0 as previously described [14], followed by reverse phase-high performance liquid chromatography (RP-HPLC). Basically, the desiccated venom (250 mg) was dispersed in 50 mM ammonium bicarbonate buffer (pH 8.0), cleared by centrifugation (480 g for 10 min at 25°), and applied on a 2.0×20.0 cm CM-Sepharose column. A gradient was applied up to 0.5 M buffer, and fractions of 3.0 mL/tube were collected at a flow rate of 25 mL/hr. The eluted acidic PLA₂ fraction was lyophilized, dissolved in 5% (v/v) acetonitrile in 0.1% (v/v) trifluoracetic acid (TFA), and rechromatographed on a Shimadzu C18 RP-HPLC column (2.0 × 25.0 cm). Elution followed a 30–100% (v/v) continuous gradient of 60% (v/v) acetonitrile in 0.1% TFA at a

flow rate of 1.0 mL/min for 70 min. All steps of the purification procedure were carried out at room temperature (25°). The PLA_2 was lyophilized and used for pharmacological characterization, amino acid sequence determination, and crystallization trials.

2.3. Biochemical characterization

PAGE for acidic proteins and SDS-PAGE followed previously described methods [30]. Isoelectric focusing was run according to Vesterberg [31]. Buffalyte, pH range 3.0–9.0 (Pierce), was used to generate the pH gradient. The determination of the amino acid composition followed the procedure described by Spackman *et al.* [32]. For protein determination, the micro-biuret method of Itzhaki and Gill [33] was followed.

2.4. N-terminal sequence

BthA-I-PLA₂ (1.8 mg) was dissolved in 250 mM Tris-HCl buffer, pH 8.2, containing 0.1% (w/v) EDTA. For each mol of Cys, 30 mol of dithiothreitol was added. After being flushed with N₂, the solution was incubated for 4 hr at 50° in the dark. Then excess vinylpyridine was added, and incubation proceeded overnight. The sample was purified on a C₁₈ RP-HPLC column, and its N-terminal sequence was determined up to the 50th residue, using a model 491 Perkin-Elmer Procise Sequenator (Applied Biosystem Division) with on-line identification of the corresponding phenylthiohydantoin derivatives [34]. The N-terminal amino acid sequence of BthA-I-PLA₂ was aligned with sequences available in the GenBank and Swiss-Prot databases using the CLUSTAL program [35].

2.5. Crystallization of BthA-I-PLA₂

The sparse-matrix method [36] was used to perform initial screening of the crystallization conditions. The crystals of the acidic PLA2 were obtained by the conventional hanging drop vapor diffusion method [37] at 293 K. Initially, small single crystals were obtained after 1 week, with the protein solution equilibrated against a reservoir containing 0.2 M ammonium sulphate and 30% (w/v) polyethylene glycol 8000. These conditions were optimized, and the volume of the drops was increased to 4 μL. Large single crystals were obtained from a solution containing 0.2 M ammonium sulphate and 22% (w/v) polyethylene glycol 6000, after approximately 1 month. X-ray diffraction data were collected using a Rigaku RU200 X-ray generator operating at 90 mA and 50 kV and an MAR Research 180 imaging plate detector, at room temperature. The image plate was operated in the 180 mm scanning mode, and crystal-detector distance was 80 mm. Two hundred images were collected using an oscillation range of 0.8°. Initially, the crystal diffracted until 1.9 Å resolution. However, due to radiation damage, diffraction gradually decreased during data collection. The data were processed to 2.1 Å resolution using the DENZO program and scaled by the SCALEPACK program [38].

2.6. Enzymatic activities

Phospholipase activity of the purified acidic PLA₂ upon egg yolk emulsion, which contains phosphatidylcholine as a substrate, was assayed as described by de Haas *et al.* [39]. The recalcification time test of citrated bovine plasma was used for determination of anticoagulant activity [40].

2.7. Platelet aggregation inhibition effect

In these experiments, the procedure described by Fuly et al. [41] was used. PRP was prepared from citrated rabbit blood (0.31%, w/v) by centrifugation (\sim 360 g/ 12 min) at room temperature. WRP were prepared from blood collected in 5 mM EDTA (final concentration). PRP samples obtained as above were centrifuged at \sim 1370 g for 20 min, and the platelet pellets were suspended in a calcium-free Tyrode's solution containing 0.35% (w/v) BSA and 0.1 mM EGTA (final concentration), pH 6.5, and washed twice by centrifugation (1370 g for 20 min at 0°). The final pellet was then suspended in Tyrode-BSA, pH 7.5, without EGTA. The suspension was adjusted to give $3-4 \times 10^5$ platelets/ μL . Platelet aggregation was measured turbidimetrically using a Whole Blood Lumi-Aggregometer (Chrono-Log Corp.). Assays were performed at 37° in siliconized glass cuvettes using 200 µL of PRP or WRP, with stirring, and aggregation was triggered after preincubation for 2 min with aliquots of acidic PLA2 in the presence of 1 mM CaCl2 (final concentration). Control experiments were done using the platelet agonists alone (ADP, collagen, or thrombin). The inhibitory concentration (IC₅₀) was determined as the amount of PLA2 that produces 50% inhibition of platelet aggregation.

2.8. Hypotensive effect

Male Wistar rats $(260\pm20~g)$ body weight) were anesthetized with urethane (1.2~g/kg,~i.p.). The carotid artery and jugular vein were isolated surgically and cannulated using polyethylene catheters for blood pressure recording and i.v. drug injection, respectively. Blood pressure was recorded using a blood pressure signal amplifier (7450A, HP) connected to a computerized data acquisition system (di190, Dataq). BthA-I-PLA2 was dissolved in saline, and different doses $(1-200~\mu g/kg)$ were injected i.v. to generate a dose-effect curve. Data were submitted to non-linear regression analysis, and an ED50 value was calculated using Prism graphic and statistical software (GraphPad). The effects of BthA-I-PLA2 were compared to those of the BPB-modified protein.

2.9. Edema-inducing activity

Groups of five Swiss male mice (18–22 g) were injected in the subplantar region with the BthA-I-PLA₂ (50 μ g/ 50 μ L). After 0.5, 1, and 3 hr, paw edema was measured with the aid of a low pressure spring caliper (Mitutoyo) [17–19]. The zero time values were then subtracted, and the differences reported as median percent \pm SD.

2.10. Myotoxic activity

The assay for creatine kinase (CK) was carried out using a CK-UV kinetic kit from Sigma. BthA-I-PLA₂ (5 μ g/ μ L) was injected (i.m., 50 μ L) in male Swiss mice of 18–22 g (N = 6). The control was given 0.15 M PBS. After 3 and 6 hr, blood from the tail was collected in heparin-coated tubes and centrifuged (3020 g for 10 min at 0°) for separation of the plasma. The amount of CK was then determined in 4 μ L plasma, by incubation with 1.0 mL of the CK Reagent for 3 min at 37° according to the Sigma kinetic CK-UV protocol. Activity was expressed in units per liter, 1 unit resulting from the phosphorylation of 1 μ mol of creatine/min at 25°.

2.11. Cytotoxic activity

Toxic activity was determined on tEnd cells and C2C12 myoblasts/myotubes, as previously described [42]. In brief, doses of 50 μg of acidic PLA_2 were diluted in the assay medium (Dulbecco's Modified Eagle's Medium supplemented with 1% fetal bovine serum), and then added to cells grown in 96-well plates, in a total volume of 150 $\mu L/well$. Controls for 0 and 100% toxicity consisted of the assay medium and 0.1% Triton X-100 in the assay medium, respectively. After 3 hr of incubation, a supernatant aliquot of 100 μL was collected for the determination of lactic dehydrogenase activity released from damaged cells, using a colorimetric end-point assay (Sigma No. 500).

2.12. *Lethality* (LD₅₀)

Lethality induced by the BthA-I-PLA₂ was evaluated by i.p., i.v., or i.c.v. injections of samples at different concentrations, in groups of Swiss mice of 18-22 g (N = 6), within 48 hr.

2.13. Chemical modification and inhibition

Modification of His48 with BPB was carried out as previously described [43]. About 3 mg of the BthA-I-PLA₂ was dissolved in 1 mL of 0.1 M ammonium bicarbonate, pH 8.0, and 150 μ L of BPB at 0.8 mg/mL ethanol was added. The mixture was incubated for 24 hr at 25°. Excess reagent was usually removed from the acidic PLA₂ preparations by ultrafiltration through an Amicon YM3 membrane, followed by lyophilization. Inhibition by 1 mM

EDTA (final concentration) was evaluated after incubation for 30 min at 37°. After that, the samples were assayed for phospholipase activity and the inhibitory effects on platelet aggregation induced by collagen (10 μ g/mL). Control experiments were performed in parallel with non-treated PLA₂ assayed under the same conditions.

2.14. Enzyme-immunoassays

Microplates (Dynatech Laboratories) were coated with purified acidic PLA₂ at 0.2 µg/well by overnight incubation in 0.1 M Tris, 0.15 M NaCl, pH 9.0 buffer. After five washes with solution A (50 mM Tris, 0.15 M NaCl, 20 µM ZnCl₂, 1 mM MgCl₂, pH 7.4 buffer), the plates were airdried and stored at 4°. Purified rabbit antibodies to *B. jararacussu* (BthTX-I and BthTX-II), B. moojeni (MjTX-II), all produced in this laboratory, B. asper (Basp-II) and anti-C-terminus peptide (115–129) from Basp-II, supplied by Dr. B. Lomonte, Instituto Clodomiro Picado, Universidad de Costa Rica, were added to triplicate wells, diluted in solution A (1:12,500) containing 2% (w/v) BSA, and

incubated at room temperature for 2 hr. After five washes with solution A, bound antibodies were detected with antirabbit immunoglobulin conjugated to alkaline phosphatase (Sigma), diluted 1:2000 in solution A–BSA and incubated for 90 min. After washing, color was developed with *p*-nitrophenylphosphate, and absorbances were recorded on a microplate reader at 410 nm [44]. Normal rabbit serum was utilized as a negative control and crotamine was included as an unrelated antigen.

3. Results

3.1. Structural characterization of the acidic PLA_2 from B. jararacussu snake venom

Fractionation of *B. jararacussu* venom (250 mg) by ionexchange chromatography on a CM-Sepharose column produced six major protein peaks (Fig. 1A). Fraction Jlb, showing high PLA₂ activity, was fractionated further by reverse phase chromatography on a C₁₈ HPLC column

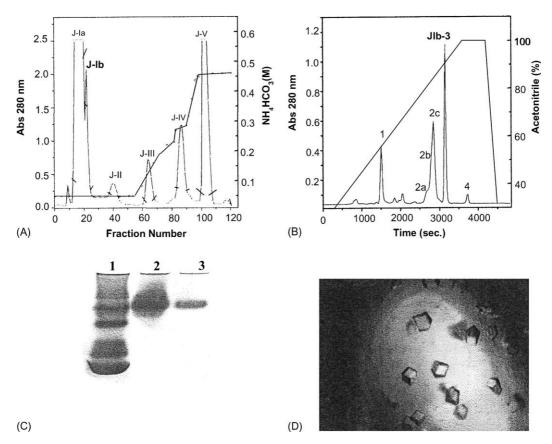


Fig. 1. Isolation of *B. jararacussu* acidic phospholipase A_2 (BthA-I-PLA₂). (A) Ion-exchange chromatography of crude venom on a CM-Sepharose column equilibrated with 50 mM ammonium bicarbonate buffer, pH 8.0. A gradient was applied up to 0.5 M buffer, and fractions of 3.0 mL/tube were collected at a flow rate of 25 mL/hr. (B) PLA₂-enriched fraction (JIb) obtained by ion-exchange chromatography was fractionated further by reverse phase chromatography on a C_{18} column run on an HPLC apparatus. Elution was carried out using a linear gradient from 18-60% (30–100% of a 60% solution) (v/v) acetonitrile in trifluoracetic acid (0.1%, v/v) at a flow rate of 1.0 mL/min for 70 min. Protein elution was monitored at 280 nm, and the fraction was assayed for phospholipase activity. The subfraction JIb-3 eluted at 88% acetonitrile displayed PLA₂ activity, being denoted BthA-I-PLA₂. (C) Native-PAGE for acidic proteins: lane 1, *B. jararacussu* venom; lane 2, fraction JIb; and lane 3, BthA-I-PLA₂ (JIb-3). (D) BthA-I-PLA₂ crystals with dimensions of $0.4 \times 0.2 \times 0.1$ mm.

gi|2117957|pir||A48188 gi|129417|sp|P06859|PA21_TRIFL gi|422653|pir||A46169 gi|2117960|pir||I51190 gi|400721|sp|P31854|PA2_VIPBB gi|3914258|sp|P81243|PA21_BOTJ BthA-I-PLA2

Fig. 2. Multiple alignments of N-terminal amino acid sequences of BthA-I-PLA₂ and other acidic PLA₂s from snake venoms using the CLUSTAL program. The sequences were taken from: *Trimeresurus flavoviridis* isoforms of PLA₂s (gi2117957, gi129417, and gi422653); *Agkistrodon piscivorus* PLA₂ (gi2117960); *Vipera berus* PA2-VIPBB (gi400721); and *B. jararaca* BJ-PLA₂ (gi3914258). According to adopted numbering for homology studies (gap between Met13 and Gly14), the last sequenced residues were His48-Asp49-Cys50-Cys51.

and resolved into several protein peaks (Fig. 1B). Subfraction JIb-3 was found to display PLA₂ activity and was named BthA-I-PLA₂. Homogeneity of this fraction was demonstrated further by native-PAGE (Fig. 1C), SDS-PAGE (data not shown), and N-terminal sequencing (Fig. 2). The purified protein consisted of a single polypeptide chain with an isoelectric point at ~4.5 and an apparent approximate molecular weight of 13,700 as estimated by SDS-PAGE.

BthA-I-PLA₂ crystals with approximate dimensions of $0.4 \times 0.2 \times 0.1$ mm were mounted in a quartz capillary (Fig. 1D). The crystallographic data for the BthA-I-PLA₂ are shown in Table 1. A total of 112,423 reflections were measured of which 11,962 were unique. The merging of all equivalent reflections resulted in a data set that is about

Table 1 X-ray diffraction data of BthA-I-PLA₂ from *B. jararacussu* snake venom

Space group	P2 ₁ or P2
Cell dimensions	a = 33.91, b = 63.75,
	$c = 49.14 \text{ Å}, \ \beta = 104.04^{\circ}$
Unique reflections	11,962 (1110) ^a
Resolution ranges (Å)	50-2.1 (2.18-2.10) ^a
Completeness (%)	95.7 (93.4) ^a
Average $I/\sigma(I)$	5.4 (2.2) ^a
$R_{\text{merge}} (\%)^{b}$	12.8 (48.1) ^a

^a Numbers in parentheses are for the highest resolution shell, 2.18–

95.7% complete at 2.1 Å with $R_{merge} = 12.8\%$. The crystals belong to the monoclinic system, space group P2 or P2₁, and have average unit cell dimensions of a = 33.91, b = 63.75, c = 49.14 Å, and $\beta = 104.04^{\circ}$.

3.2. Functional characterization of the acidic PLA₂ from B. jararacussu snake venom

BthA-I-PLA₂ showed high PLA₂ activity, but low anticoagulant activity on platelet poor plasma. It was also able to induce edema (Table 2). BthA-I-PLA₂ was not toxic when injected i.p. (25 mg/kg), i.v. (7.5 mg/kg), or i.c.v. (0.5 mg/kg) in mice. Doses up to 250 µg did not cause any necrosis and did not release CK into the plasma (results not shown).

BthA-I-PLA₂ inhibited platelet aggregation of rabbit PRP in a dose-dependent manner, and its potency depended on the concentration of agonists used to trigger platelet aggregation (Fig. 3). Similar $_{10}$ values (437 and 743 nM for 10 and 25 μ g/mL of collagen and 624 and 1248 nM for 4 and 10 μ M ADP, respectively) were found.

When WRP were incubated with BthA-I-PLA₂ (25 μ g/mL), no inhibition of aggregation induced by collagen or thrombin was detected (results not shown). However, addition of small amounts of rabbit plasma (5%, v/v) or exogenous phosphatidylcholine (80 μ g/mL, final concentration) to the washed platelet suspension restored the inhibitory effect of BthA-I-PLA₂ for collagen-induced platelet aggregation (data not shown).

BthA-I-PLA₂ was chemically modified by reacting the protein with BPB and then assayed for phospholipase,

Table 2
Enzymatic and pharmacological activities induced by native or BPB-BthA-I-PLA₂ from *B. jararacussu* snake venom

Enzyme	PLA ₂ activity (U/mg)	Cytotoxicity ^a (%)	CK ^b (U/L)	Edema ^c (%)	Platelet aggregation inhibition ^d (%)
BthA-I-PLA ₂ BPB-BthA-I-PLA ₂	$119.3 \pm 2.44 \\ 0.0$	0.0 ND ^e	0.0 ND	30.6 ± 1.18 0.5	$100.0 \pm 2.00 \\ 0.0$

Values represent the means \pm SD of three experiments.

^b R_{merge} = Σ_{hkl} (Σ_i (|I_{hkl,i}-⟨I_{hkl})|))/ $\Sigma_{hkl,i}$ ⟨I_{hkl}⟩, where I_{hkl,i} is the intensity of an individual measurement of the reflection with Miller indices h, k and l, and ⟨I_{hkl}⟩ is the mean intensity of that reflection calculated for I > -3 σ (I).

 $^{^{\}rm a}$ Cytotoxicity was induced by 40 μg of BthA-I-PLA2.

^b Myotoxicity was induced by 250 μg of BthA-I-PLA₂.

^c Edema was induced by 50 μg of BthA-I-PLA₂, 30 min after inoculation.

^d The native and modified BthA-I-PLA₂ were assayed for inhibitory effect on collagen-induced platelet aggregation by 20 µg of BthA-I-PLA₂.

e ND = not determined.

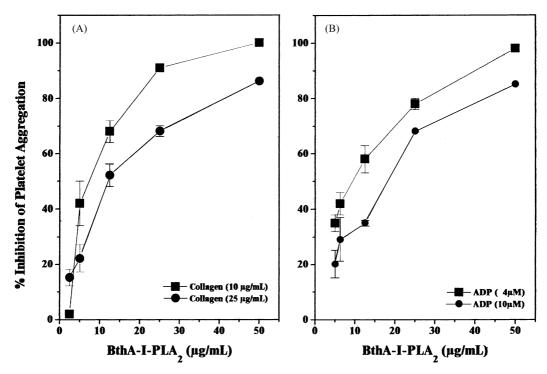


Fig. 3. Inhibitory effect of BthA-I-PLA₂ on platelet aggregation. (A) PRP samples were stirred for 2 min at 37° with BthA-I-PLA₂ (2–50 µg/mL); then platelet aggregation was triggered by adding 10 or 25 µg/mL of collagen. (B) The platelets were preincubated with BthA-I-PLA₂ under the same conditions, and then 4 or 10 µM ADP was added to induce platelet aggregation. Results are reported as means \pm SD (N = 3 animals/assay).

edema-inducing and hypotensive activity, and inhibitory effects on collagen-induced platelet aggregation. Amino acid analysis comparisons of native and modified BthA-I-PLA₂ showed that a single His was modified by BPB (results not shown). Table 2 shows that all activities were abolished or reduced. Control BthA-I-PLA₂ incubated with ammonium bicarbonate buffer alone showed no loss of activity.

The i.v. injection of BthA-I-PLA₂ caused an immediate fall in blood pressure. The hypotensive response to the protein was dose-related, with an approximate ${\rm ED}_{50}$ of 30 ${\rm \mu g/kg}$. Repeated injections of lower doses of the protein caused acute desensitization, indicating occurrence of tachyphylaxis. No significant cardiovascular effects were observed after the i.v. injection of the BPB-modified Bth-I-PLA₂ at the same dose corresponding to the ${\rm ED}_{50}$ for the intact protein (Fig. 4).

In addition, BthA-I-PLA₂ showed a higher cross-reaction with anti-*B. jararacussu* and anti-BthTX-II antibodies. The anti-C terminus peptide (115–129) from *B. asper* myotoxin II weakly recognized BthA-I-PLA₂ (Fig. 5).

4. Discussion

Snake venom PLA₂ enzymes, in addition to their possible role in the digestion of prey, exhibit a wide variety of pharmacological effects, including effects on platelet aggregation [9,25,41,45]. Several platelet aggregation inhibitors have been purified and characterized from various snake

venoms, but data on *Bothrops* snake venoms with respect to platelet aggregation inhibitors are still scant.

BthA-I-PLA₂ is a new antiplatelet and hypotensive acidic PLA₂, isolated from *B. jararacussu* venom by a two-step sequential purification procedure, which was characterized structurally and functionally. The N-terminal sequence analysis of native BthA-I-PLA₂ (Fig. 2) showed that BthA-I-PLA₂ contains all of the PLA₂ conserved residues involved in Ca²⁺ binding (Tyr28, Gly30, Gly32, and Asp49) and in the catalytic network (His48). Some substitutions were found in the hydrophobic channel where Trp19, which is also reported as part of the interfacial binding surface [46], is replaced by a Val19 residue. A comparison of the N-terminal sequence of BthA-I-PLA₂ with other PLA₂s exhibiting platelet-inhibiting activity showed a moderate degree of similarity (68–72%) to class II PLA₂ isolated from snake venoms.

The molecular mass of BthA-I-PLA₂ is approximately 13.7 kDa. The volume of the unit cell is $103,522\,\text{Å}^3$, compatible with one or two molecules in the asymmetric unit with a V_M (volume per dalton) value of 3.76 or 1.88 Å³/Da, respectively. Assuming a value of 0.74 cm³/g for the protein partial specific volume, the calculated solvent content in the crystal is 67.3 or 34.7% [47] for a dimer or a monomer, respectively, in the asymmetric unit. Attempts to solve the structure by the molecular replacement method are underway.

BthA-I-PLA₂ showed a very high PLA₂ catalytic activity (119.3 U/mg) when compared with BthTX-II (32 U/mg), an Asp49 basic and myotoxic PLA₂ isolated from the

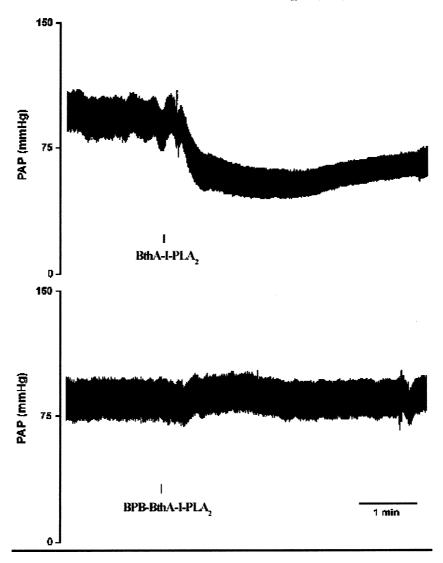


Fig. 4. Hypotension activity of BthA-I-PLA₂. Pulsatile arterial blood pressure (PAP) recordings of urethane-anesthetized rats showing the hypotensive response to the i.v. injection of 30 μ g/kg of BthA-I-PLA₂ and the absence of the cardiovascular effects after the injection of the BPB-modified protein (30 μ g/kg of BPB-BthA-I-PLA₂), indicating that the hypotensive response is related to enzyme activity.

same venom [14,26–28]. BthA-I-PLA₂ did not induce any myotoxicity or lethality in the mice. Nevertheless, other acidic PLA₂s isolated from *B. alternatus* [48] and from *Lachesis muta* [49] were reported to be able to induce myonecrosis.

Platelet aggregation plays an important role in platelet retraction and wound healing. Any alteration in platelet aggregation could lead to debilitation or death. As observed in "Results," purified BthA-I-PLA2 displayed a significant inhibitory effect on aggregation of rabbit PRP. BthA-I-PLA2 showed IC50 values of 437 and 743 nM for collagen- (10 and 25 μ g/mL) and 624 and 1248 nM for ADP- (4 and 10 μ M) induced platelet aggregation. When BthA-I-PLA2 was preincubated with washed platelets, no inhibitory effect was observed, suggesting the dependence of a plasma substrate for the purified enzyme. When an exogenous source of phospholipids was added to the washed platelet suspension, the inhibitory effect was

clearly restored, indicating that phospholipids present in the plasma may be substrates for BthA-I-PLA₂ and/or that the products enzymatically formed are able to elicit such responses on platelets.

The i.v. injection of BthA-I-PLA₂ caused an immediate fall in blood pressure. The hypotensive responses were dose-dependent and tachyphylatic. The acute desensitization observed after repeated injections of small doses of the protein may indicate the existence of a small pool of substrate, available to the phospholipase when i.v. injected. The hypotensive response was no longer observed when BthA-I-PLA₂ was modified after reaction with BPB. The lack of effects after the blockade of the catalytic site with BPB suggests that the hypotensive response to BthA-I-PLA₂ is due to its phospholipase activity.

BthA-I-PLA₂ was chemically modified on the histidine-48 residue by *p*-bromophenacyl bromide on the basis of homology with the data of Zhao *et al.* [50]. This amino acid

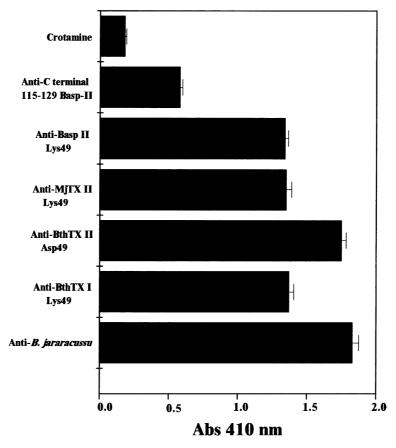


Fig. 5. Cross-reactivity of BthA-I-PLA₂ with anti-B. *jararacussu* venom antibodies, anti-Asp49 (B. *jararacussu* BthTX-II) or anti-Lys49 (B. *jararacussu* BthTX-I, B. *moojeni* MjTX-II, B. *asper* Basp-II, and B. *asper* C-terminus peptide 115–129 from Basp-II) myotoxins. Negative control: crotamine. Results are reported as means \pm SD (N = 3 animals/assay).

residue is known to be crucial for the enzymatic and pharmacological activities of PLA₂s [12,14,17–20,43,48,50,51]. Modified BthA-I-PLA₂ failed to inhibit PRP aggregation as well as the hypotensive response and no phospholipase or edema activities were observed, suggesting that the enzymatic activity is important for these pharmacological effects. For some PLA₂s, there is a relationship between their pharmacological effect and enzymatic activity [14,41], while for others, no correlation is observed [51]. According to Evans and Kini [9], BthA-I-PLA₂, whose platelet aggregation inhibitory activity was dependent on catalytic activity, is better placed in class B1.

Anti-B. jararacussu and anti-BthTX-II antibodies recognize BthA-I-PLA₂, while anti-Lys49 PLA₂ (B. asper Basp-II, B. jararacussu BthTX-I, and B. moojeni MjTX-II) antibodies showed less cross-reactivity (Fig. 5). In addition, the anti-C-terminus peptide (115–129) from Basp-II weakly recognized BthA-I-PLA₂, suggesting that the C-terminus of the acidic PLA₂ is structurally different from those of basic PLA₂s. This C-terminal region from basic PLA₂ myotoxins is known to bind heparin, and it has been suggested to be the segment responsible for the cytotoxic and myotoxic effects of B. asper myotoxin-II [52,53]. Recently, Fuly et al. [49] showed that the myotoxic effect induced by the acidic PLA₂ from Lachesis muta venom is

not inhibited by heparin, in agreement with the idea that the C-terminal regions of acidic and basic PLA₂s are structurally different.

Further interaction studies of PLA₂ with platelets and/or with isolated blood components will help to elucidate the reaction mechanism of inhibition and provide information on the amino acid residues involved in the interaction with platelets. Due to their fundamental role in hemostasis and thrombosis, inhibitors of platelet aggregation are of interest in atherosclerosis and in the regulation of tumor growth in cancer [54]. PLA₂ enzymes are also useful as tools in the study of molecular mechanisms of platelet aggregation and are potential models for the development of drugs that inhibit platelet aggregation.

Acknowledgments

The authors acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação para o Desenvolvimento da UNESP (FUNDUNESP), and Pronex (CNPq, 661132/1998-6), as well as the skillful technical assistance of V.M. Rodrigues, O.A.B. Cunha, C.A. Vieira, and L.H.

Anzaloni-Pedrosa. We thank Dr. B. Kobe (St. Vincent's Institute of Medical Research) for the use of the rotating anode source; and Dr. B. Lomonte, Dr. Y. Angulo, and MSc. A. Quintero (Instituto Clodomiro Picado, Universidad de San Jose), who provided antibodies raised against the C-terminus peptide 115–129 of *B. asper* myotoxin II and for the determination of cytotoxic and enzymatic activities, respectively.

References

- Balsinde J, Balboa MA, Insel PA, Dennis EA. Regulation and inhibition of phospholipase A₂. Annu Rev Pharmacol Toxicol 1999;39: 175–89.
- [2] Dessen A. Phospholipase A₂ enzymes: structural diversity in lipid messenger metabolism. Structure 2000;8:R15–22.
- [3] Gutiérrez JM, Lomonte B. Phospholipase A₂ myotoxins from Bothrops snake venoms. In: Kini RM, editor. Venom phospholipase A₂ enzymes: structure, function and mechanism. Chichester: Wiley, 1997. p. 321–52.
- [4] Ownby CL. Structure, function and biophysical aspects of the myotoxins from snake venoms. J Toxicol Toxin Rev 1998;17:1003–9.
- [5] Valentin E, Lambeau G. What can venom phospholipase A₂ tell us about the functional diversity of mammalian secreted phospholipase A₂? Biochimie 2000;82:815–31.
- [6] Kini RM, Evans HJ. A model to explain the pharmacological effects of snake venom phospholipases A₂. Toxicon 1989;27:613–35.
- [7] Kini RM. Phospholipase A₂—a complex multifunctional protein puzzle. In: Kini RM, editor. Venom phospholipase A₂ enzymes: structure, function and mechanism. Chichester: Wiley, 1997. p. 1–28.
- [8] Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis. Biochimie 2000;82:851–9.
- [9] Evans HJ, Kini RM. Effects of phospholipase A₂ enzymes on platelet aggregation. In: Kini RM, editor. Venom phospholipase A₂ enzymes: structure, function and mechanism. Chichester: Wiley, 1997. p. 369–88.
- [10] de Azevedo WF, Ward RJ, Canduri F, Soares AM, Giglio JR, Arni RK. Crystal structure of piratoxin-I: a calcium-independent myotoxic phospholipase A₂ homologue from *Bothrops pirajai* snake venom. Toxicon 1998;36:1395–406.
- [11] Rodrigues VM, Soares AM, Mancin AC, Fontes MRM, Homsi-Brandeburgo MI, Giglio JR. Geographic variations in the composition of myotoxins from *Bothrops neuwiedi* snake venoms: biochemical characterization and biological activity. Comp Biochem Physiol 1998:121A:215–22.
- [12] Toyama MH, Soares AM, Vieira CA, Novello JC, Oliveira B, Giglio JR, Marangoni S. The amino acid sequence of piratoxin-I (PrTX-I), a myotoxin from *Bothrops pirajai* venom, and its biological activity after alkylation with p-bromophenacyl bromide. J Protein Chem 1998;17:713–8.
- [13] Fontes MRM, Soares AM, Rodrigues VM, Fernandes AC, da Silva RJ, Giglio JR. Crystallization and preliminary X-ray diffraction analysis of a myotoxic phospholipase A₂ homologue from *Bothrops neuwiedi* pauloensis venom. Biochim Biophys Acta 1999;1432:393–5.
- [14] Andrião-Escarso SH, Soares AM, Rodrigues VM, Angulo Y, Díaz C, Lomonte B, Gutiérrez JM, Giglio JR. Myotoxic phospholipases A₂ in Bothrops snake venoms: effects of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie 2000;82:755–63.
- [15] Soares AM, Rodrigues VM, Homsi-Brandeburgo MI, Toyama MH, Lombardi FR, Arni RK, Giglio JR. A rapid procedure for the isolation of the Lys-49 myotoxin II from *Bothrops moojeni* (caissaca) venom: biochemical characterization, crystallization, myotoxic and edematogenic activity. Toxicon 1998;36:503–14.

- [16] Toyama MH, Soares AM, Wen-Hwa L, Polikarpov I, Giglio JR, Marangoni S. Amino acid sequence of piratoxin-II, a myotoxic Lys-49 phospholipase A₂ homologue from *Bothrops pirajai* venom. Biochimie 2000:82:245–50.
- [17] Soares AM, Andrião-Escarso SH, Angulo Y, Lomonte B, Gutiérrez JM, Marangoni S, Toyama MH, Arni RK, Giglio JR. Structural and functional characterization of myotoxin I, a Lys49 phospholipase A₂ homologue from *Bothrops moojeni* (caissaca) snake venom. Arch Biochem Biophys 2000;373:7–15.
- [18] Soares AM, Guerra-Sá R, Borja-Oliveira C, Rodrigues VM, Rodrigues-Simioni L, Rodrigues V, Fontes MRM, Gutiérrez JM, Giglio JR. Structural and functional characterization of BnSP-7, a myotoxin Lys49 phospholipase A₂ homologue, from *Bothrops neuwiedi pauloensis* venom. Arch Biochem Biophys 2000;378:201–9.
- [19] Soares AM, Andrião-Escarso SH, Rodrigues-Simioni L, Gutiérrez JM, Arni RK, Bortoleto RK, Ward RJ, Giglio JR. Dissociation of enzymatic and pharmacological properties of piratoxins-I and -III, two myotoxic phospholipases A₂ from *Bothrops pirajai* snake venom. Arch Biochem Biophys 2001;387:188–96.
- [20] Soares AM, Mancin AC, Cecchini AL, Arantes EC, França SC, Gutiérrez JM, Giglio JR. Effects of chemical modifications of crotoxin B, the phospholipase A₂ subunit of crotoxin from *Crotalus durissus* terrificus snake venom, on its enzymatic and pharmacological activities. Int J Biochem Cell Biol 2001;33:877–88.
- [21] Machado OL, Oliveira-Carvalho AL, Zingali RB, Carlini CR. Purification, physicochemical characterization and N-terminal amino acid sequence of a phospholipase A₂ from *Bothrops jararaca* venom. Braz J Med Biol Res 1993;26:163–6.
- [22] de Araújo AL, Radvanyi F, Bon C. Purification of an acidic phospholipase A₂ from *Bothrops lanceolatus* (fer de lance) venom: molecular and enzymatic properties. Toxicon 1994;32:1069–81.
- [23] Daniele JJ, Bianco ID, Fidelio GD. Kinetic and pharmacological characterization of phospholipases A₂ from *Bothrops neuwiedii* venom. Arch Biochem Biophys 1995;318:65–70.
- [24] Daniele JJ, Bianco ID, Delgado C, Carrillo DB, Fidelio GD. A new phospholipase A₂ isoform isolated from *Bothrops neuwiedii* (Yarará chica) venom with novel kinetic and chromatographic properties. Toxicon 1997;35:1205–15.
- [25] Serrano SMT, Reichl AP, Mentele R, Auerswald EA, Santoro ML, Sampaio CAM, Camargo ACM, Assakura MT. A novel phospholipase A₂, BJ-PLA₂, from the venom of the snake *Bothrops jararaca*: purification, primary structure analysis, and its characterization as a platelet-aggregation-inhibiting factor. Arch Biochem Biophys 1999; 367:26–32.
- [26] Homsi-Brandeburgo MI, Queiroz LS, Santo-Neto H, Rodrigues-Simioni L, Giglio JR. Fractionation of *Bothrops jararacussu* snake venom: partial chemical characterization and biological activity of bothropstoxin. Toxicon 1988;26:615–27.
- [27] Cintra ACO, Marangoni S, Oliveira B, Giglio JR. Bothropstoxin-I: amino acid sequence and function. J Protein Chem 1993;12:57–64.
- [28] Pereira MF, Novello JC, Cintra ACO, Giglio JR, Landucci ECT, Oliveira B, Marangoni S. The amino acid sequence of bothropstoxin-II, an Asp-49 myotoxin from *Bothrops jararacussu* (jararacuçu) venom with low phospholipase A₂ activity. J Protein Chem 1998;17:381–6.
- [29] da Silva Giotto MT, Garratt RC, Oliva G, Mascarenhas YP, Giglio JR, Cintra ACO, de Azevedo Jr WF, Arni RK, Ward RJ. Crystallographic and spectroscopic characterization of a molecular hinge: conformational changes in bothropstoxin-I, a dimeric Lys49-phospholipase A₂ homologue. Proteins 1998;30:442–54.
- [30] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.
- [31] Vesterberg O. Isoelectric focusing of proteins in polyacrylamide gels. Biochim Biophys Acta 1972;257:11–30.
- [32] Spackman DH, Stein WH, Moore S. Automatic recording apparatus for use in the chromatography of amino acids. Anal Chem 1958;30: 1190–206.

- [33] Itzhaki RF, Gill DM. A micro-biuret method for estimating proteins. Anal Biochem 1964;9:401–10.
- [34] Rodrigues VM, Soares AM, Guera-Sá R, Rodrigues V, Fontes MRM, Giglio JR. Structural and functional characterization of neuwiedase, a non-hemorrhagic fibrin(ogen)olytic metalloprotease from *Bothrops neuwiedi* snake venom. Arch Biochem Biophys 2000;381:213–24.
- [35] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–80.
- [36] Jancarik J, Kim SH. Sparse-matrix sampling—a screening method for crystallization of proteins. J Appl Cryst 1991;24:409–11.
- [37] MacPherson A. Preparation and analysis of protein crystals. New York: Wiley, 1982.
- [38] Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997;276:307–26.
- [39] de Haas GH, Postema NM, Nieuwenhuizen W, van Deenen LLM. Purification and properties of phospholipase A from porcine pancreas. Biochim Biophys Acta 1968;159:103–17.
- [40] Alvarado J, Gutiérrez JM. Anticoagulant effect of myotoxic phospholipase A₂ isolated from the venom of the snake *Bothrops asper* (Viperidae). Rev Biol Trop 1988;36:563–5.
- [41] Fuly AL, Machado OL, Alves EW, Carlini CR. Mechanism of inhibitory action on platelet activation of a phospholipase A₂ isolate from *Lachesis* muta (bushmaster) snake venom. Thromb Haemost 1997;78:1372–80.
- [42] Lomonte B, Angulo Y, Rufini S, Cho W, Giglio JR, Ohno M, Daniele JJ, Geoghegan P, Gutiérrez JM. Comparative study of the cytolytic activity of myotoxic phospholipases A₂ on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells *in vitro*. Toxicon 1999;37:145–58.
- [43] Díaz-Oreiro C, Gutiérrez JM. Chemical modification of histidine and lysine residues of myotoxic phospholipase A₂ isolated from *Bothrops asper* and *Bothrops godmani* snake venoms: effects on enzymatic and pharmacological properties. Toxicon 1997;35:241–52.
- [44] Angulo Y, Nunez CE, Lizano S, Soares AM, Lomonte B. Immunochemical properties of the N-terminal helix of myotoxin-II, a lysine-49

- phospholipase A₂ from *Bothrops asper* snake venom. Toxicon 2001; 39:879–87.
- [45] Liu X, Wu X, Zhou Y. Identification of key residues responsible for enzymatic and platelet-aggregation-inhibiting activities of acidic phospholipase A₂ from Agkistrodon halys pallas. J Nat Toxins 2001:10:43-51.
- [46] Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB. Interfacial catalysis: the mechanism of phospholipase A₂. Science 1990;250:1541–6.
- [47] Matthews BW. Solvent content of protein crystals. J Mol Biol 1968; 33:491-7
- [48] Nisenbon HE, Perazzo JC, Monserrat AJ, Vidal JC. Effect of chemical modification with p-bromophenacyl bromide on the enzymatic and lethal properties of phospholipase A₂ from Bothrops alternatus (Víbora de la Cruz) venom. Toxicon 1988;26:1137–44.
- [49] Fuly AL, Calil-Elias S, Zingali RB, Guimarães JA, Melo PA. Myotoxic activity of an acidic phospholipase A₂ isolated from *Lachesis muta* (bushmaster) snake venom. Toxicon 2000;38:961–72.
- [50] Zhao H, Tang L, Wang X, Zhou Y, Lin Z. Structure of a snake venom phospholipase A₂ modified by p-bromo-phenacyl-bromide. Toxicon 1998;36:875–86.
- [51] Díaz C, Gutiérrez JM, Lomonte B, Núñez J. p-Bromophenacyl bromide modification of Bothrops asper myotoxin II, a lysine-49 phospholipase A₂, affects its pharmacological activities. Toxicon 1993; 31:1202–6.
- [52] Lomonte B, Tarkowisky A, Bagge U, Hanson LA. Neutralization of the cytolytic and myotoxic activities of phospholipases A₂ from *Bothrops asper* snake venom by glycosaminoglycans of the heparin/heparan sulfate family. Biochem Pharmacol 1994;47:1509–18.
- [53] Lomonte B, Moreno E, Tarkowski A, Hanson LA, Maccarana M. Neutralizing interaction between heparins and myotoxin II, a Lys-49 phospholipase A₂ from *Bothrops asper* snake venom. J Biol Chem 1994;269:29867–73.
- [54] Rickles FR, Edwards RL. Activation of blood coagulation in cancer. Blood 1983:62:14–31.